黄色一级大片视频-黄色一级毛片看一级毛片-黄色一级毛片网站-黄色一级毛片在线观看-免费国产h视频在线观看-免费黄色大片视频

電話咨詢 在線咨詢 產品定制
電話咨詢 在線咨詢 產品定制
010-68321050

光刻機的幾個關鍵部件介紹,怎樣分析光刻機性能

五度易鏈 2019-04-16 3733 0

專屬客服號

微信訂閱號

大數據治理

全面提升數據價值

賦能業務提質增效

?光刻機的發展限制了現在的芯片發展,現在國內的光刻機發展和國外的差距非常大,那么光刻機的技術包括哪些方面呢?

【專題 | 「光刻機」光刻技術_ASML光刻機_國產光刻機_EUV光刻機】

光刻機的發展限制了現在的芯片發展,現在國內的光刻機發展和國外的差距非常大,那么光刻機的技術包括哪些方面呢?

光刻機就是放大的單反,光刻機就是將光罩上的設計好集成電路圖形通過光線的曝光印到光感材料上,形成圖形。最核心的就是鏡頭,這個不是一般的鏡頭,可以達到高2米直徑1米,甚至更大。

光源

光源是光刻機核心之一,光刻機的工藝能力首先取決于其光源的波長。最早光刻機的光源是采用汞燈產生的紫外光源(UV: Ultraviolet Light),從g-line一直發展到i-line,波長縮小到365nm,實際對應的分辨率大約在200nm以上。隨后,業界采用了準分子激光的深紫外光源(DUV: Deep Ultraviolet Light)。將波長進一步縮小到ArF的193nm。不過原本接下來打算采用的157nm的F2準分子激光上遇到了一系列技術障礙以后,ArF加浸入技術(Immersion Technology)成為了主流。

所謂浸入技術,就是讓鏡頭和硅片之間的空間浸泡于液體之中。由于液體的折射率大于1,使得激光的實際波長會大幅度縮小。目前主流采用的純凈水的折射率為1.44,所以ArF加浸入技術實際等效的波長為193nm/1.44=134nm。從而實現更高的分辨率。F2準分子激光之所以沒有得以發展的一個重大原因是,157nm波長的光線不能穿透純凈水,無法和浸入技術結合。所以,準分子激光光源只發展到了ArF。

這之后,業界開始采用極紫外光源(EUV: Extreme Ultraviolet Light)來進一步提供更短波長的光源。目前主要采用的辦法是將準分子激光照射在錫等靶材上,激發出13.5nm的光子,作為光刻機光源。目前,各大Foundry廠在7nm以下的最高端工藝上都會采用EUV光刻機,其中三星在7nm節點上就已經采用了。而目前只有荷蘭ASML一家能夠提供可供量產用的EUV光刻機。

分辨率

光刻機的分辨率(Resolution)表示光刻機能清晰投影最小圖像的能力,是光刻機最重要的技術指標之一,決定了光刻機能夠被應用于的工藝節點水平。但必須注意的是,雖然分辨率和光源波長有著密切關系,但兩者并非是完全對應。具體而言二者關系公式是:

公式中R代表分辨率;λ代表光源波長;k1是工藝相關參數,一般多在0.25到0.4之間;NA(Numerical Aperture)被稱作數值孔徑,是光學鏡頭的一個重要指標,一般光刻機設備都會明確標注該指標的數值。

所以我們在研究和了解光刻機性能的時候,一定要確認該值。在光源波長不變的情況下,NA的大小直接決定和光刻機的實際分辨率,也等于決定了光刻機能夠達到的最高的工藝節點。

套刻精度

套刻精度(Overlay Accuracy)的基本含義時指前后兩道光刻工序之間彼此圖形的對準精度(3σ),如果對準的偏差過大,就會直接影響產品的良率。對于高階的光刻機,一般設備供應商就套刻精度會提供兩個數值,一種是單機自身的兩次套刻誤差,另一種是兩臺設備(不同設備)間的套刻誤差。

工藝節點

工藝節點(nodes)是反映集成電路技術工藝水平最直接的參數。目前主流的節點為0.35um、0.25um、0.18um、90nm、65nm、40nm、28nm、20nm、16/14nm、10nm、7nm等。傳統上(在28nm節點以前),節點的數值一般指MOS管柵極的最小長度(gate length),也有用第二層金屬層(M2)走線的最小間距(pitch)作為節點指標的。

節點的尺寸數值基本上和晶體管的長寬成正比關系,每一個節點基本上是前一個節點的0.7倍。這樣以來,由于0.7X0.7=0.49,所以每一代工藝節點上晶體管的面積都比上一代小大約一半,也就是說單位面積上的晶體管數量翻了一番。這也是著名的摩爾定律(Moore's Law)的基礎所在。一般而言,大約18~24個月,工藝節點就會發展一代。

芯片制造核心工藝介紹

光刻是半導體芯片生產流程中最復雜、最關鍵的工藝步驟,耗時長、成本高。半導體芯片生產的難點和關鍵點在于將電路圖從掩模上轉移至硅片上,這一過程通過光刻來實現, 光刻的工藝水平直接決定芯片的制程水平和性能水平。芯片在生產中需要進行 20-30 次的光刻,耗時占到 IC 生產環節的 50%左右,占芯片生產成本的 1/3。

光刻的原理是在硅片表面覆蓋一層具有高度光敏感性光刻膠,再用光線(一般是紫外光、深紫外光、極紫外光)透過掩模照射在硅片表面,被光線照射到的光刻膠會發生反應。此后用特定溶劑洗去被照射/未被照射的光刻膠, 就實現了電路圖從掩模到硅片的轉移。光刻完成后對沒有光刻膠保護的硅片部分進行刻蝕,最后洗去剩余光刻膠, 就實現了半導體器件在硅片表面的構建過程。

光刻分為正性光刻和負性光刻兩種基本工藝,區別在于兩者使用的光刻膠的類型不同。負性光刻使用的光刻膠在曝光后會因為交聯而變得不可溶解,并會硬化,不會被溶劑洗掉,從而該部分硅片不會在后續流程中被腐蝕掉,負性光刻光刻膠上的圖形與掩模版圖形相反。

光刻機的技術十分復雜,現有技術也是經歷了漫長的研究,國內企業在光刻機的技術研究需要從關鍵技術出發,逐步提升自我研究的水平。

>>> 「五度易鏈」產業大數據服務解決方案 <<<

本文由五度數科整理,轉載請標明出處,違者必究!

評論

產業專題

申請產品定制

請完善以下信息,我們的顧問會在1個工作日內與您聯系,為您安排產品定制服務

  • *姓名

  • *手機號

  • *驗證碼

    獲取驗證碼
    獲取驗證碼
  • *您的郵箱

  • *政府/園區/機構/企業名稱

  • 您的職務

  • 備注